2013 Consumer Confidence Report

Water System Name:	Correctional Training Facility	Report Date:	June 24, 2014
	er quality for many constituents as require ring for the period of January 1 - Decembe		
Este informe contiene i entienda bien.	nformación muy importante sobre su ag	gua potable. Tradúz	zcalo ó hable con alguien que lo
Type of water source(s)	in use: Ground Water		
Name & general location	n of source(s): Well # 5; Well # 6 & Wel	1 # 7, Water ID# 271	0850
Drinking Water Source	Assessment information: On File @ CTF		
Time and place of regula	urly scheduled board meetings for public pa	rticipation: NA	
For more information, co	ontact: Bill Homsany CPM II	Phone: (8	31) 678-5975

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: Department permission to exceed an MCL or not comply with a treatment technique under certain conditions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (μg/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Revised Jan 2014

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial
 processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural
 application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the California Department of Public Health (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 7, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The Department allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

TABLE 1 –	SAMPLING	RESULT	S SHO	OWI	NG THE DE	ETECTION	OF COLIF	ORM BACTERIA
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of m	nonths i	in	МС	CL	MCLG	Typical Source of Bacteria
Total Coliform Bacteria	(In a mo.) <u>1</u>		1	More than 1 sample in a month with a detection			0	Naturally present in the environment
Fecal Coliform or E. coli	(In the year)			A routine sar repeat sample total coliforn sample also coliform or E	detect and either detects fecal	0	Human and animal fecal waste	
TABLE 2	- SAMPLIN	G RESUL	TS SI	HOW	ING THE I	DETECTIO	ON OF LEAD	D AND COPPER
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of samples collected	90 ^t percer leve detec	ntile el	No. sites exceeding AL	AL	PHG	Typical Source of Contaminant
Lead (ppb)	5/27/2011	22	2.	7	2	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	5/27/2011	21	13.	.6	0	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
	TABLE 3	– SAMPL	ING R	RESU	LTS FOR S	SODIUM A	ND HARDI	NESS
Chemical or Constituent (and reporting units)	Sample Date			Range of etections	MCL	PHG (MCLG)	Typical Source of Contaminant	
Sodium (ppm)	5/30/2013	79 mg/	/1			none	none	Salt present in the water and is generally naturally occurring
Hardness (ppm)	5/30/2013	306 mg	g/l			none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually

^{*}Any violation of an MCL or AL is asterisked. Additional information regarding the violation is provided later in this report.

2013 SWS CCR Form

naturally occurring

TABLE 4 – DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD							
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant	
Arsenic ug/L	5/28/2013	ND	10	Ug/L	0	Erosion from natural deposits, run off from orchards, glass and electronics production waste	
Floride mg/L	5/28/2013	0.16	.1523	2	1	Erosion from natural deposits, water additives which promote strong teeth, discharge from fertilizer and aluminum factories	
Nitrate mg/L	5/28/2013	28	45	45	45	Runoff and leaching from fertilizer use, leaching from septic tanks and sewage, erosion from natural deposits	
TABLE 5 – DETECTION OF CONTAMINANTS WITH A SECONDARY DRINKING WATER STANDARD							
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant	
Turbidity NTV	5/28/2013	0.55	0.10-0.30	5	5	Soil Run off	
Conductivity umho/cm	5/28/2013	914	672-791	1600	1600	Substances that form ions in water, sea water influences	
Total Dissolved Solids	5/17/2013	490	470-510	1000	1000	Run off/leaching from natural deposits	
TABLE 6 – DETECTION OF UNREGULATED CONTAMINANTS							
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level Health Effects Lan		Health Effects Language	
Perchlorate	1/21/2013	ND	NA				
Chromium	6/10/2013	ND	NA				

^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. <u>Correctional Training Facility</u> is responsible for providing

2013 SWS CCR Form Revised Jan 2014

high quality drinking water, but cannot control the variety of materials used in plumbing components. has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water,	for 30 seconds to
have your water tested. Information on lead in drinking water, testing methods, and steps you can exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead .	

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATIO	N OF A MCL, MRDL, AL,	TT, OR MONITORING	G AND REPORTING REQU	IREMENT
Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language

For Water Systems Providing Ground Water as a Source of Drinking Water

TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUND WATER SOURCE SAMPLES						
Microbiological Contaminants (complete if fecal-indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant	
E. coli	1	3/19/2013	0	(0)	Human and animal fecal waste	
Enterococci	(In the year)		TT	n/a	Human and animal fecal waste	
Coliphage	(In the year)		TT	n/a	Human and animal fecal waste	

Summary Information for Fecal Indicator-Positive Ground Water Source Samples, Uncorrected Significant Deficiencies, or Ground Water TT

SPECIAL NOTICE OF FECAL INDICATOR-POSITIVE GROUND WATER SOURCE SAMPLE
CORPORAL NOTICE FOR VIVOOR PROGRAM CONTRACTOR CONTRACTO
SPECIAL NOTICE FOR UNCORRECTED SIGNIFICANT DEFICIENCIES

2013 SWS CCR Form Revised Jan 2014

Summary Information for Violation of a Surface Water TT

VIOLATION OF A SURFACE WATER TT					
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language	
				·	

Summary Information for Operating Under a Variance or Exemption

2013 SWS CCR Form

⁽b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.

^{*} Any violation of a TT is marked with an asterisk. Additional information regarding the violation is provided below.

Consumer Confidence Report	Page 6 of 6
	3

Memorandum

Date

June 5, 2013

To

A. Wagner

Correctional Plant Supervisor

Subject :

LOCATIONS OF CCR REPORTS

Locations of CCR postings- Facility C

- 1: Central Entrance Building; Bldg. EE
- 2: Central Administration; Bldg. A
- 3: Central Library; Bldg. R
- 4: Housing Units B thru Z Wing

Locations of CCR posting: North Facility A

- 1: North Entrance Building; Bldg SL
- 2: North Foyer "Patio" Bldg. SL-100EX
- 3: North Library; Bldg SF
- 4: North Housing SA, SB and Toro Dorm

Locations of CCR posting: North Facility B

1: North Housing SC, SD and Fremont Dorm

Locations of CCR Postings: South Facility D

- 1: South Entrance Building: Bldg S-71
- 2: South Administration Building; S-69
- 3: South Library; Bldg S-52

Residences living on CTF grounds, SH-7 thru SH-16

Trailer park residence, Space Sp1 thru Sp21

Institutional cable TV, available to all within compound.

